

Contents

Introduction 2
Foundation Stage 5
Addition 9
Subtraction 15
Multiplication 20
Division 27
Number fluency 34

We respect the UN Convention on the Rights of the Child.
Article 28: We have the right to a good quality education.

Introduction

This calculation policy provides an overview of calculation methods taught in Dore Primary School.

Foundation Stage

"Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically."
(Development Matters, DfE 2021)
This section outlines the endpoints that children work towards in Foundation Stage as they develop their understanding of number and begin to learn how to count. At Dore Primary School, the Development Matters' framework is followed by teachers in Foundation Stage alongside the White Rose Maths curriculum to ensure that rich opportunities are created for children to explore and investigate number, spot patterns and make learning connections.

Year 1-6

This section outlines the concrete, pictorial and abstract methods for each of the four main operations (addition, subtraction, multiplication and division) alongside key vocabulary. Each part includes objectives from the Chris Quigley Milestones which link directly to the National Curriculum mathematics programme of study².

At Dore Primary School, the White Rose Maths ${ }^{3}$ framework is followed by all teachers to support with the planning and delivery of quality maths lessons.

The aim of this approach is to:

- support children's ability to make links and connections between mathematical concepts,
- Develop children's reasoning and problem solving skills
- Increase children's fluency of number fact recall.

[^0]
What are concrete, pictorial and abstract?

"If we do not use concrete manipulations, then we cannot understand mathematics. If we only use concrete manipulations, then we are not doing mathematics." ${ }^{4}$

Concrete - Children use practical apparatus such as base 10, place value counters, Cuisenaire rods, Numicon and plastic coins to complete calculations. The main focus is to investigate new concepts and ideas, develop an understanding of the place value of numbers and recognise links to prior learning.

Pictorial - Children draw images of practical apparatus to encourage them to begin developing mental pictures of calculations and visualise the calculation. Children make links between concrete and abstract representations.

Abstract - Children represent prior learning using mathematical symbols. They consolidate the understanding formed through concrete and pictorial investigation and use digits and symbols to represent calculations.

How does concrete, pictorial and abstract impact children's learning?

- Children show better retention rates of new concepts when they are introduced using practical apparatus compared to just using abstract symbols ${ }^{5}$
- Using practical apparatus reduces cognitive demand on pupils ${ }^{6}$
- Children develop a deeper understanding of concepts ${ }^{7}$
- Using concrete and pictorial images reduces an overreliance on mathematical rules and encourages a deeper understanding of concepts ${ }^{8}$
- Using practical apparatus address and overcome children's misconceptions about mathematical concepts ${ }^{9}$

[^1]
What are the maths non-negotiables?

The maths non-negotiables are key recall facts which are taught in each year group to support children's maths fluency. At Dore Primary School, children are encouraged to look carefully at questions in order to choose the most efficient method for solving calculations. Developing number fluency allows children to use mental methods to calculate, thus reducing cognitive load and increasing efficiency. In addition to regularly being practised during maths lessons, these recall facts are taught and revised throughout the day as part of classroom routines such as during classroom transitions.

Foundation Stage

End points: (Development Matters, DfE 2021)	Small steps:
Count objects, actions and sounds	Children count objects by matching one number name to each item. Children understand that the last number counted is the total number in the group. This is called the cardinal counting principle. We finished on number five, so there are five altogether." Children count out a smaller number from a larger group and demonstrate the cardinal principle of knowing when to stop. "Please could you pass three crayons?" "One...Two...Three..." Classroom examples: - Count in routines throughout the day such as lining up, timers for tidying up and counting out pieces of snack. - Read and sing stories, songs and rhymes that include counting. - Play games which include counting e.g. rolling a dice and moving a counter forward a set number of jumps.
Subitise	Children recognise small quantities in familiar patterns. Children become familiar with the tens structure of the number system. Tens Frame Children are prompted to subitise first when enumerating groups of up to five objects then count to check. "They are arranged in a square shape so there must be four. Let's count together and check."

	Classroom examples: - Play games involving revealing and hiding numbers of objects. - Arrange objects in five frames and then tens frames. - Encourage children to show a number of fingers all at once rather than counting them.
Link the number symbol to its cardinal number value	Children begin to link numerals to concrete resources or pictorial images that show the number's cardinal value. Classroom examples: - Display numerals in order alongside dots, tens frame arrangements and Numicon. - Play games such as snap or dominoes where children match numerals to dot arrangements. - Discuss different ways that children might record quantities such as tallies, dots and numerals.
Count beyond 10	Children spot patterns in ordered numbers above 10. 21...22...23...24...25... Children become familiar with concrete and pictorial representations of numbers from 10 to 20. 13 17 12 Classroom examples: - Counting is included in routines throughout the day such as lining up, timers for tidying up and counting out pieces of snack. - Count together the number of children who have selected different lunch options during the register. - Count verbally above 20 and emphasise the multiples of ten to enable children to recognise the structure.

Compare numbers	Children begin to use comparison vocabulary: 'more than', 'less than', 'fewer', 'the same as', 'equal to'. 4 3 "There are more pink cubes than yellow cubes." "There are four bears in each family so they both have the same amount, even though some are big bears and some are little bears." Classroom examples: - Use loose parts pieces to group items and compare amounts. Vary the size of items and how spread out they are in order to show that it is the number of objects being compared and not their size or space taken. - Distribute items equally such as "Put three shells in each bag". Deliberately make mistakes to provoke discussion about who has more and less. - Encourage children to share out resources such as construction bricks to ensure that everyone has the same.
Understand the 'one more than/one less than' relationship between consecutive numbers	Children recognise that the order of numbers in the counting sequence is related to the size of the numbers. Classroom examples: - Make predictions about what the outcome will be in stories, rhymes and songs if one is added, or if one is taken away. - Count objects then add or take one away and count again. - Build towers of bricks, adding one more extra brick to each new tower.

| Explore the |
| :--- | :--- |
| composition of |
| numbers to 10 | Children understand the composition of numbers 2, 3, 4 and 5

Addition

Key vocabulary:				
addition	increase	more	sum	count on
	plus	total	makegether	add

Y1 (Milestone 1 Basic)

- Use concrete objects and pictorial representations to solve addition calculations.
- Begin to recognise numbers can be added in any order.

Y2 (Milestone 1 Advancing)

- Solve one step problems using 2 digit numbers.
- Know numbers can be added in any order.
- Add 2 two digit numbers together.

Combining two parts to make a whole

Adding using counting on

Concrete	Pictorial	Abstract
Numicon Multilink cubes Or Cuisenaire rods	Drawing \qquad Bar model \square ?	What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2=$

Adding to a 2 digit number

Y3 (Milestone 2 Basic)

- Add numbers up to 3 digits using the column method.
- With support, add mentally up to 3 digit numbers (e.g. 3 digit + ones; 3 digit + tens; 3 digit + hundreds).

Y4 (Milestone 2 Advancing)

- Add numbers up to 4 digits using the column method.
- Confidently add mentally up to 3 digit numbers (e.g. 3 digit + ones; 3 digit + tens; 3 digit + hundreds).

Y5 (Milestone 3 Basic)

- With support, add numbers up to 5 digits using the column method and round to check answers.
- With support, add 3 digit numbers mentally.

Y6 (Milestone 3 Secure)

- Add and subtract numbers larger than 3 digits mentally.

Regrouping to make 10

Adding TO + TO (2 digit number + 2 digit number) with regrouping

Adding HTO + HTO (3 digit number+3 digit number) with regrouping

Y5 (Milestone 3 Basic)

- With support, add negative numbers

Y6 (Milestone 3 Secure)

- Add 6 digit numbers with decimals using written formal methods and round to check answers.

Subtraction

Key vocabulary:
subtraction difference between fewer reduce decrease
take away less minus subtract

Yl (Milestone 1 Basic)

- Use concrete objects and pictorial representations to solve subtraction calculations.
- With support, beginning to understand addition and subtraction as inverse functions.

Y2 (Milestone 1 Advancing)

- Solve one step problems using 2 digit numbers.
- Subtract a two digit number from another two digit number when no regrouping is required
- Use knowledge of inverse operations to solve missing number problems.

Taking away objects from a whole by removing objects

Counting back

Finding the difference

Concrete	Pictorial	Abstract
Cuisenaire rods $8.5=$	Draw counters	Find the difference between 8 and 5 .
	$\begin{aligned} & 00000000 \\ & 00000 \longleftarrow ? \end{aligned}$	Why do 9-6 and
	Bar model	8 - 5 have the same difference?
Multilink cubes $8-5=$	$\begin{array}{\|c\|} \hline 8 \\ \hline \end{array}$	What will the difference between 7 and 4 be?
Numicon		What patterns can you recognise?
$8-5=$ $8-B=8$		

Counting back to the nearest 10

Concrete	Pictorial	Abstract
Cubes and tens frame \qquad Compare bears $14-5=$ Numicon $14-5=$	Drawing counters in tens frames	$\begin{aligned} & 14-5= \\ & 14-4-1= \\ & 14-4=10 \\ & 10-1=9 \end{aligned}$

Y3（Milestone 2 Basic）

－Subtract numbers up to 3 digits using the column method．
－With support，subtract mentally up to 3 digits．
－Estimate the answer to a calculation and use the inverse to check answers．
－With support，solve missing number problems using complex addition and subtraction．

Y4（Milestone 2 Advancing）
－Subtract numbers up to 4 digits using the column method．
－Confidently，subtract mentally up to 3 digit numbers．
－Confidently estimates the answer to a calculation and use the inverse to check answers．
－Solve missing number problems using complex addition and subtraction．

Y5 (Milestone 3 Basic)

- With support, subtract up to 5 digits using the column method and round to check answers.
- With support, mentally subtract 3 digit numbers.

Y6 (Milestone 3 Secure)

- Subtract up to 6 digit numbers using the column method and round to check answers.
- Mentally subtract numbers larger than 3 digits.

Subtracting using the column method (no exchange)

Subtracting using the column method (with exchange)

Y5 (Milestone 3 Basic)

- With support, subtract negative numbers

Y6 (Milestone 3 Secure)

- Use the column method to subtract up to 6 digits including decimals
- With reminders, add and subtract negative numbers.

Multiplication

Key vocabulary:
multiplication
groups of
repeated addition
lots of
product
times
multiplied by
multiply

Yl (Milestone 1 Basic)

- With support, solve one step problems using multiplication with concrete objects, arrays and pictorial representations.
- With support, recognise that 2 numbers can be multiplied in any order.

Y2 (Milestone 1 Advancing)

- Solve one step problems using multiplication with concrete objects, arrays and pictorial representations.
- Use knowledge of numbers multiplied in any order to check calculations.
- Solve simple problems using mental multiplication methods.

Repeated grouping/repeated addition with objects

Concrete		Pictor			str	
Using objects 3 equal groups with 4 in each group Using pasta to create shapes 3 lots of 4 \square \square \square Multilink cubes \square Numicon \square \square \square	Drawing objects			$\begin{aligned} & 3 \times 4 \\ & 3 \text { lot } \\ & 4+4 \\ & \hline \\ & \hline 4 \end{aligned}$	$4=$ $=$ 4	4

Repeated grouping on a number line

Showing commutativity

Y3 (Milestone 2 Basic)

- Multiply a 2 digit number by a 1 digit number using the formal written layout.
- With support, multiply 3 numbers together.
- With support, identify and use factor pairs in mental calculations

Y4 (Milestone 2 Advancing)

- Multiply 2 and 3 digit numbers formally by a 1 digit number using the formal written layout.
- Identify and use factor pairs in mental calculations.
- Multiply 3 numbers together.

Y5 (Milestone 3 Basic)

- With support, use written formal method for multiplication of 4 digit numbers by 2 digit numbers (long multiplication).
- Mentally solve multistep problems e.g. $5 \times 3-6$ and 60×6

Y6 (Milestone 3 Advancing)

- Problems involving the four operations are undertaken accurately and the BIDMAS rule is understood.
- Use written formal method for multiplication of 4 digit numbers by 2 digit numbers (long multiplication).
- Mentally solve multi-step problems e.g. 0.6×6

Using partitioning to multiply

Formal column method (no regrouping)

Concrete		Pictorial		Abstract										
$\text { Base } 10$		Drawing base 10												
105	15	105 11 11 11	$\begin{aligned} & \quad 15 \\ & \hline \times \times x \\ & \hline \times \times x \\ & { }^{15 \times x} \end{aligned}$	105			15							
11	...			2			3							
				2			33							
11	..			2										
11	".			6 9										
6	9	6	9											
Place value counters $3 \times 23=$		Drawing counters $3 \times 23=$			$\begin{array}{r}23 \\ \times 3 \\ \hline\end{array}$		3	\checkmark						
105	15			00	○○○				9	(3	x	3)		
$\because \bullet$	000 000	00	000		6	0	(2	0	\times	3)				
$\bullet \bullet$	000	$\bigcirc 0$	000											
	9					9								
		6	9											

Formal column method (with regrouping)

Concrete	Pictorial	Abstract						
Place value counters $6 \times 23=$	Drawing base 10$6 \times 23=$							
		$\begin{array}{r} \\ \hline \quad 23\end{array}$						
	il	x 6						
	${ }_{\\|}^{11}$	18	(3	x	6)			
$\because \quad \begin{aligned} & \because 0.00 \\ & 0 \times 0\end{aligned}$	\|			120	(2)	0	\times	6)
	1							
$1 \because 1000$	$\square^{10} 1$	-138						
1005 105 15 \ddots 000 \ddots 00	(ii) \times xx	- or						
	(111)	6						
	(i)	$\begin{array}{r}66 \\ \times 23 \\ \hline\end{array}$						
	1.	+ 63 $\times 18$						
		18 20	$(6$	x	3)			
		20	$(6$	x	+ 2	0)		
	(Place value counters could also be used in the same							
(Base 10 could also be								

Multiplying a 3 digit number by a 2 digit number and beyond...
(Children should already be confident with the formal method of multiplying with regrouping. Children need to be confident with the abstract method shown below. If children are struggling with this method, recap the previous concrete and abstract methods shown for multiplying a 3 -digit and 1 -digit number.)

The small digits represent regrouping. They are written above the larger digits. These digits are crossed out after being
regrouped. This helps avoid confusion when calculating the final answer.

As with the column addition

| | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 1 | 2 | 4 | | | | | | | | | |
| | x | | 2 | 6 | | | | | | | | | |
| | | 1 | 7 | 4 | 4 | | $(1$ | 2 | 4 | x | $6)$ | | |
| | 2 | 4 | 8 | 0 | | $(1$ | 2 | 4 | x | 2 | $0)$ | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | 1 | 2 | 4 | | | | | | | | | |
| | x | | 2 | 6 | | | | | | | | | |
| | | 7 | 4 | 4 | | $(1$ | 2 | 4 | x | $6)$ | | | |
| | 2 | 4 | 8 | 0 | | $(1$ | 2 | 4 | x | 2 | $0)$ | | |
| | 1 | 1 | | | | | | | | | | | |
| | 3 | 2 | 2 | 4 | | | | | | | | | | method, children leave a line for regrouping.

Multiplying decimals

Step 1: Multiply each decimal by multiples of 10 to create whole numbers.

Step 2: Multiply the two whole numbers together using the method on page 20.

		4	2	7						
	X		3	7						
	2	9	8	9	(4	2	7	x	$7)$	
1	2	8	1	0	(4	2	7	x	3	0)
	1									
1	5	7	9	9						

Step 3: Divide the whole numbers by the multiples of 10 .

4	2	27		X		3	7	$=$	1	5	5	7	9	9		
		-100				,						+1000	000			
4	-	2	7	X	3	-	7	$=$	1	5	5	-	7	9		9

Division

Key vocabulary:
division
equ
divide by share
group divide
whole fractions

Yl (Milestone 1 Basic)

- With support, solve one step problems using division with concrete objects, arrays and pictorial representations.
- With support, recognise that numbers cannot be divided in any order.

Y2 (Milestone 1 Advancing)

- Solve one step problems using division with concrete objects, arrays and pictorial representations.
- Recognise that numbers cannot be divided in any order

Sharing equally using objects

Repeated subtraction

Concrete	Pictorial	Abstract
Cuisenaire rods	Drawing number lines	Number lines
$20 \div 4=5$		
		$6 \div 2=$
Numicon		$1123 \quad 4 \quad 56$
$20 \div 4=5$		
$-4 \sqrt{-4} \sqrt{-4} \sqrt{-4}$		$\begin{array}{rrr} 12 \div 4= \\ -4 \end{array} \quad-4$
$\begin{array}{lllllll}0 & 4 & 8 & 12 & 16 & 20\end{array}$		0 4 8 12

Y3 (Milestone 2 Basic)

- Divide a 2 digit number by a 1 digit number using the formal written layout.

Y4 (Milestone 2 Advancing)

- Divide 2 and 3 digit numbers by a 1 digit number using the formal written layout.

Introducing remainders

Concrete	Pictorial	Abstract
Cuisenaire rods	Drawing shapes There are 3 whole squares with 1 leftover.	Drawing number lines
$20 \div 6=3 r 2$		

Dividing a 2 digit number by a 1 digit number

Y5 (Milestone 3 Basic)

- With support, use formal written method for division of a 4 digit number by a 1 digit numbers.

Dividing a 3 digit number by a 1 digit number (short division)

Y6 (Milestone 3 Secure)

- Use formal written method for division of a 4 digit number by a 2 digit numbers.

Divide numbers up to four digits by a two-digit whole number using long division.

Step 1: How many 12 s are there in 3 ?
Since 3 is smaller than 12, there are no 12 s in 3 .

Step 2: So how many 12s are there in
34 ? We can work out that there are
2 lots of 12 in 34 . We write this number above the 4.

Step 3: We then need to write down the exact amount that 2×12 comes to

underneath the 34, so that we can
see how many are left. 34-24 = 10

Step 4: Bringing down the next digit, we now need to find out how many 12s there are in 106.
Separate jottings on the side may be helpful. The answer of 8 is written above the 6 .
28

12 \begin{tabular}{l}
3468

24

106

 \quad

$9 \times 12=108$

\hline $10 \times 12=96$
\end{tabular}

Step 5: Having established that there are 8 lots of 12 in 106 , we need to work out how many we have left over. $8 \times 12=96$, leaving a remainder of 10 .

Step 6 Again, we bring down the next digit in the question (8). Now we have to calculate how many 12 s there are in 108. The answer of 9 is written above the 8.

Step $712 \times 9=108$ which leaves us with no remainders.

So, $3468 \div 12=289$

Maths non-negotiables (Key instant recall facts)							
	EYFS	Y 1	Y2	Y3	Y4	Y5	Y6
Autumn 1	Say the number names in order to 5	Adding and subtracting 1 within 10 e.g. $5+1=6$	Know all addition facts within 20 e.g. $7+8=15$	Know multiplication and division facts for the 4 times table	Know multiplication and division facts for the 9 times table	```Know all decimals that total 1 or 10 (1 decimal place)```	Know all decimals that total 1 (2 decimal places)
Autumn 2	Say the number names in order to 10	Adding and subtracting 2 within 10 e.g. $5-2=3$	Know all subtraction facts within 20 e.g. $15-7=8$	Know multiplication and division facts for the 8 times table	Know multiplication and division facts for the 12 times table	Know metric conversion facts e.g. $1 \mathrm{~kg}=1000 \mathrm{~g}$	Use all multiplication and division facts to derive x and \div of small multiples of 10 and 100 (e.g. 30×900; $8100 \div 9)$
Spring 1	Begin to recognise the days of the week	Know all addition and subtraction number bonds to 10	Know multiplication and division facts for the 10 times table	Consolidate 2 s , $5 s, 10 s, 3 s, 4 s$ and 8s times tables	Know multiplication and division facts for the 7 times table	Know the doubles and halves of all twodigit numbers	Use multiplication and division facts to multiply and divide decimals (e.g. 1.2×8)
Spring 2	Partition numbers to 5 into two groups	Know doubles and halves within $\begin{gathered} 10 \\ \text { e.g. } 4+4=8 \\ 8-4=4 \end{gathered}$	Know multiplication and division facts for the 2 times table (link to doubles/halves)	Know multiplication and division facts for the 6 times table	Consolidate multiplication and division facts up to 12×12	Know pairs of factors of numbers up to 100	Know the decimal and percentage equivalents of the fractions $1 / 3,2 / 3$, $1 / 10$ s and $1 / 5 \mathrm{~s}$
Summer 1	Count forward and backwards in ones from any number up to 10	Know near doubles within 10 e.g. $3+4=7$ and difference of 1 or 2 subtractions e.g. $7-6=1$	Know multiplication and division facts for the 5 times table	Know multiplication and division facts for the 11 times table	Consolidate multiplication and division facts up to 12×12	Know the decimal and percentage equivalents of the fractions $1 / 2$, $1 / 4,3 / 4$	Know the prime numbers within 50
Summer 2	Count forwards and backwards in ones from any number up to 20	Know all addition and subtraction facts within 10	Know multiplication and division facts for the 3 times table	Consolidate 2s, $5 \mathrm{~s}, 10 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 8 \mathrm{~s}$, $6 s$, and 11 s times tables	Consolidate multiplication and division facts up to 12×12	Know square numbers and square roots to 12×12	Know the doubles and halves of all multiples of 100 to 10,000

AUTUMN 1
Adding 1 within 10

+	1	2	3	4	5	6	7	8	9	10
1	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Subtracting 1 within 10

Adding 2 more

+	1	2	3	4	5	6	7	8	9	10
1	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Subtracting 2 less

-	1	2	3	4	5	6	7	8	9	10
1	1-1									
2	2-1	2-2								
3	3-1	(3-2)	3-3							
4	4-1	(4-2)	4-3	4-4						
5	5-1	(5-2)	5-3	5-4	5-5					
6	6-1	(6-2)	6-3	6-4	6-5	6-6				
7	7-1	(7-2	7-3	7-4	7-5	7-6	7-7			
8	8-1	8-2	8-3	8-4	8-5	8-6	8-7	8-8		
9	9-1	(9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9	
10	10-1	(10-2	10-3	10-4	10-5	10-6	10-7	10-8	10-9	10-10

SPRING 1

Addition number bonds to 10

+	1	2	3	4	5	6	7	8	9	10
1	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Subtraction number bonds to 10

-	1	2	3	4	5	6	7	8	9	10
1	$1-1$									
2	$2-1$	$2-2$								
3	$3-1$	$3-2$	$3-3$							
4	$4-1$	$4-2$	$4-3$	$4-4$						
5	$5-1$	$5-2$	$5-3$	$5-4$	$5-5$					
6	$6-1$	$6-2$	$6-3$	$6-4$	$6-5$	$6-6$				
7	$7-1$	$7-2$	$7-3$	$7-4$	$7-5$	$7-6$	$7-7$			
8	$8-1$	$8-2$	$8-3$	$8-4$	$8-5$	$8-6$	$8-7$	$8-8$		
9	$9-1$	$9-2$	$9-3$	$9-4$	$9-5$	$9-6$	$9-7$	$9-8$	$9-9$	
10	$10-1$	$10-2$	$10-3$	$10-4$	$10-5$	$10-6$	$10-7$	$10-8$	$10-9$	$10-10$

Doubles within 10

+	1	2	3	4	5	6	7	8	9	10
1	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Halving within 10

-	1	2	3	4	5	6	7	8	9	10
1	1-1									
2	2-1	2-2								
3	3-1	3-2	3-3							
4	4-1	4-2	4-3	4-4						
5	5-1	5-2	5-3	5-4	5-5					
6	6-1	6-2	6-3	6-4	6-5	6-6				
7	7-1	7-2	7-3	7-4	7-5	7-6	7-7			
8	8-1	8-2	8-3	8-4	8-5	8-6	8-7	8-8		
9	9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9	
10	10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8	10-9	10-10

Near doubles within 10 (4 weeks)

+	1	2	3	4	5	6	7	8	9	10
1	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+1$	$4+2$	$4+$	$4+4$	$4+$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Finding the difference (1 or 2)

-	1	2	3	4	5	6	7	8	9	10
1	1-1									
2	2-1	2-2								
3	3-1	3-2	3-3							
4	4-1	4-2	(4-3	4-4						
5	5-1	5-2	5-3	(5-4	5-5					
6	6-1	6-2	6-3	6-4	(6-5	6-6				
7	7-1	7-2	7-3	7-4	(7-5	7-6	7-7			
8	8-1	8-2	8-3	8-4	8-5	8-6	8-7	8-8		
9	9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9	
10	10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8	10-9	10-10

Adding 3

+	1	2	3	4	5	6	7	8	9	10
1	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Subtracting 3, 4, 5 and 6

-	1	2	3	4	5	6	7	8	9	10
1	1-1									
2	2-1	2-2								
3	3-1	3-2	3-3							
4	4-1	4-2	4-3	4-4						
5	5-1	5-2	5-3	5-4	5-5					
6	6-1	6-2	6-3	6-4	6-5	6-6				
7	7-1	7-2	7-3	7-4	7-5	7-6	7-7			
8	8-1	8-2	8-3	8-4	8-5	8-6	8-7	8-8		
9	9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9	
10	10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8	10-9	10-10

AUTUMN 1
Addition facts within 20

+	1	2	3	4	5	6	7	8	9	10
1	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$+7$	+8	$4+9$	$4+10$
5	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	7	8	$5+9$	$5+10$
6	$6+1$	$6+2$	$6+3$	$6+4$	$6+$	6	+7	$6+8$	$6+$	$6+10$
7	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+1$	$8+2$	$8+3$	+	$8+$	+6		8	$8+9$	$8+10$
9	$9+1$	$9+2$	$9+$	$9+$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

AUTUMN 2
Subtraction facts within 20

[^0]: ${ }^{1}$ https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1007446/6.7534_DfE_Developm ent_Matters_Report_and_illustrations_web__2_.pdf
 2 https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
 ${ }^{3}$ https://whiterosemaths.com

[^1]: ${ }^{4} \mathrm{https}: / / \mathrm{www} . t e s . c o m / t e a c h i n g-r e s o u r c e / t h e-i m p o r t a n c e-o f-c o n c r e t e-p r o f e s s i o n a l-d e v e l o p m e n t-11476476$
 ${ }^{5}$ Carbonneau, Marley and Selig 2013(https://nrich.maths.org/10461)
 ${ }^{6}$ Chinnappan and Chandler 2010 (http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1146\&context=edupapers)
 ${ }^{7}$ Ofsted 2012 (https://www.gov.uk/government/publications/mathematics-made-to-measure)
 ${ }^{8}$ NCETM 2013(https://nrich.maths.org/10461)
 ${ }^{9}$ Drews 2007 (http://www.xtec.cat/centres/a8005072/articles/resources.pdf)

